当前位置: 首页 >> 汽车
RK3588-UART
来源:jf_30051736     时间:2023-06-10 20:33:56

前言

专栏总目录本文主要讲解如何关于RK3588开发板UART的使用和调试方法,包括UART作为普通串口和控制台两种不同使用场景

一. 功能特点

RockchipUART (Universal Asynchronous Receiver/Transmitter) 基于16550A串口标准,完整模块支持以下功能:

支持5、6、7、8 bits数据位。支持1、1.5、2 bits停止位。支持奇校验和偶校验,不支持mark校验和space校验。支持接收FIFO和发送FIFO,一般为32字节或者64字节。支持最高4M波特率,实际支持波特率需要芯片时钟分频策略配合。支持中断传输模式和DMA传输模式。 支持硬件自动流控,RTS+CTS。

二、代码位置

Linuxkernel 中,使用8250串口通用驱动,以下为主要驱动文件:


(资料图片)

drivers/tty/serial/8250/8250_core.c # 8250串口驱动核心

drivers/tty/serial/8250/8250_dw.c # Synopsis DesignWare 8250串口驱动

drivers/tty/serial/8250/8250_dma.c # 8250串口DMA驱动

drivers/tty/serial/8250/8250_port.c # 8250串口端口操作

drivers/tty/serial/8250/8250_early.c # 8250串口early console驱动

SDK中提供的UART默认配置已经使用了8250驱动我们就不需要修改

三、硬件原理图

串口功能的硬件上比较简单,这是只附上调试串口的原理图

四、设备树配置

rk平台的设备树修改路径都是在kernel\\arch\\arm64\\boot\\dts\\rockchip下面,具体哪个文件根据对应开发板来决定,通常描述设备硬件配置在rkxxxx.dtsi中,比如在rk3588s.dtsi中:

uart2: serial@feb50000 {compatible = "rockchip,rk3588-uart", "snps,dw-apb-uart";reg = < 0x0 0xfeb50000 0x0 0x100 >;interrupts = < GIC_SPI 333 IRQ_TYPE_LEVEL_HIGH >;clocks = < &cru SCLK_UART2 >, < &cru PCLK_UART2 >;clock-names = "baudclk", "apb_pclk";reg-shift = < 2 >;reg-io-width = < 4 >;dmas = < &dmac0 10 >, < &dmac0 11 >;pinctrl-names = "default";pinctrl-0 = < &uart2m1_xfer >;status = "disabled";};

4.1作为普通串口

假入我们想使用w3开发板上40PIN上的uart7

我们在dts可以使用如下配置打开

&uart7 {status = "okay";pinctrl-names = "default";pinctrl-0 = < &uart7m1_xfer >;};

4.2作为调试串口

Rockchip UART作为控制台,使用fiq_debugger流程。

在dts中fiq_debugger节点配置如下。由于fiq_debugger和普通串口互斥,在使能fiq_debugger节点后必须禁用对应的普通串口uart节点。

chosen: chosen {bootargs = "earlycon=uart8250,mmio32,0xfe660000 console=ttyFIQ0";};fiq-debugger {compatible = "rockchip,fiq-debugger";rockchip,serial-id = < 2 >;rockchip,wake-irq = < 0 >;/* If enable uart uses irq insteadof fiq */rockchip,irq-mode-enable = < 1 >;rockchip,baudrate = < 1500000 >; /* Only 115200 and 1500000 */interrupts = < GIC_SPI 252 IRQ_TYPE_LEVEL_LOW >;pinctrl-names = "default";pinctrl-0 = < &uart2m0_xfer >;status = "okay";};&uart2 {status = "disabled";};
rockchip,serial-id:使用的UART编号。修改serial-id到不同UART,fiq_debugger设备也会注册成ttyFIQ0设备。 rockchip,irq-mode-enable:配置为1使用irq中断,配置为0使用fiq中断。interrupts:配置的辅助中断,保持默认即可。pinctrl-0:使用的串口引脚rockchip,baudrate:波特率配置

五、串口相关问题

5.1设备注册

普通串口设备将会根据dts中的aliase来对串口进行编号,对应注册成ttySx设备。注册的节点为/dev/ttyS4,命名规则是通过dts中的aliases来的。

aliases {serial0 = &uart0;serial1 = &uart1;serial2 = &uart2;serial3 = &uart3;}

对应uart0注册为ttyS0,uart0注册为ttyS1,如果需要把uart3注册成ttyS1,可以进行以下修改

serial1 = &uart3;  serial3 = &uart1;

5.2控制台打印相关

Rockchip UART打印通常包括DDR阶段、Miniloader阶段、TF-A (Trusted Firmware-A)阶段、OP-TEE阶段、Uboot阶段和Kernel阶段,我们平时主要关注的是uboot阶段和kernel阶段的打印,在这两个阶段我们可以尝试关闭所有打印或切换所有打印到其他UART,RK平台默认的调试串口是uart2_m0这一组引脚,假如现在我将打印换成其他串口,可以尝试以下做法。

5.2.1DDR Loader修改方法

DDR Loader中关闭或切换打印,需要修改DDR Loader中的UART打印配置,修改文件rkbin/tools/ddrbin_param.txt中的以下参数:

uart id= # UART控制器id,配置为0xf为关闭打印

uart iomux= # 复用的IOMUX引脚 uart

baudrate= # 115200 or 1500000

修改完成后,使用以下命令重新生成ddr.bin固件。

./ddrbin_tool ddrbin_param.txt rk3588_ddr_lp4_2112MHz_lp5_2736MHz_v1.09.bin

5.2.2Uboot修改方法

Uboot中关闭打印,需要在menuconfig中,打开配CONFIG_DISABLE_CONSOLE,保存到.config文件

Uboot中切换打印,由传参机制决定,不需要进行额外修改。uboot解析传参机制相关代码在arch/arm/mach-rockchip/board.c的board_init_f_init_serial()函数中。

5.2.3kernel修改方法

去掉打印需要在menuconfig中,关闭配置CONFIG_SERIAL_8250_CONSOLE。

Device Drivers --->

Character devices --->

Serial drivers --->

[ ]Console on 8250/16550 and compatible serial port

在dts配置中找到类似以下内容,并去掉UART基地址和console相关配置参数

chosen: chosen {bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 irqchip.gicv3_pseudo_nmi=0 root=PARTUUID=614e0000-0000 rw rootwait";};

将0xfeb50000 console=ttyFIQ0 去掉,然后找到fiq-debugger节点,修改serial-id为0xffffffff,去掉UART引脚复用相关配置。注意,需要保持fiqdebugger节点使能,保持fiq-debugger流程系统才能正常启动

fiq_debugger: fiq-debugger {compatible = "rockchip,fiq-debugger";rockchip,serial-id = < 0xffffffff >;rockchip,wake-irq = < 0 >;/* If enable uart uses irq instead of fiq */rockchip,irq-mode-enable = < 1 >;rockchip,baudrate = < 1500000 >;  /* Only 115200 and 1500000 */interrupts = < GIC_SPI 423 IRQ_TYPE_LEVEL_LOW >;status = "okay";};

切换打印串口例如将Kernel打印从UART2切换到UART3,在dts配置中找到类似以下内容,将UART基地址由UART2改为UART3.

bootargs = "earlycon=uart8250,mmio32,0xfe670000 console=ttyFIQ0";

0xfe670000是UART3基地址,然后找到fiq-debugger节点,修改serial-id为3,修改UART3引脚复用配置pinctrl-0 = <&uart3m0_xfer>。注意,同时需要将切换为打印串口的UART3作为普通串口的节点禁用。

六、串口测试

在开发板上跑一套应用程序,可以发送数据,可以接收数据,测试方法可以短接TX_RX

#include < stdio.h >#include < stdlib.h >#include < errno.h >#include < unistd.h >#include < fcntl.h >#include < string.h >#include < termio.h >#include < time.h >#include < pthread.h >int read_data(int fd, void *buf, int len);int write_data(int fd, void *buf, int len);int setup_port(int fd, int baud, int databits, int parity, int stopbits);void print_usage(char *program_name);pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;pthread_cond_t data_ready = PTHREAD_COND_INITIALIZER;int data_available = 0;void *read_thread(void *arg) {    int fd = *(int *)arg;    char buffer[1024]; // 存储读取的数据    while (1) {        int bytes_read = read_data(fd, buffer, sizeof(buffer));        if (bytes_read > 0) {            printf("Read Thread: Read %d bytes: %s\\n", bytes_read, buffer);        } else {            // 处理读取错误或设备关闭的情况            break;        }    }        pthread_exit(NULL);}void *write_thread(void *arg) {    int fd = *(int *)arg;char input[1024]; // 存储用户输入的数据    while (1) {        printf("Enter data to write (or "q" to quit): ");        fgets(input, sizeof(input), stdin);        if (strcmp(input, "q\\n") == 0 || strcmp(input, "Q\\n") == 0) {            // 用户输入 "q" 或 "Q",退出循环            break;        }        int len = strlen(input);        int bytes_written = write_data(fd, input, len);        if (bytes_written > 0) {            printf("Write Thread: Wrote %d bytes: %s\\n", bytes_written, input);        }    }        pthread_exit(NULL);}int main(int argc, char *argv[]) //./a.out /dev/ttyS4 115200 8 0 1{    int fd;    int baud;    int len;    int count;    int i;    int databits;    int stopbits;    int parity;    if (argc != 6) {        print_usage(argv[0]);        return 1;    }     baud = atoi(argv[2]);    if ((baud < 0) || (baud > 921600)) {        fprintf(stderr, "Invalid baudrate!\\n");        return 1;    }     databits = atoi(argv[3]);    if ((databits < 5) || (databits > 8)) {        fprintf(stderr, "Invalid databits!\\n");        return 1;    }     parity = atoi(argv[4]);    if ((parity < 0) || (parity > 2)) {        fprintf(stderr, "Invalid parity!\\n");        return 1;    }     stopbits = atoi(argv[5]);    if ((stopbits < 1) || (stopbits > 2)) {        fprintf(stderr, "Invalid stopbits!\\n");        return 1;    }      fd = open(argv[1], O_RDWR, 0);    if (fd < 0) {        fprintf(stderr, "open < %s > error %s\\n", argv[1], strerror(errno));        return 1;    }     if (setup_port(fd, baud, databits, parity, stopbits)) {        fprintf(stderr, "setup_port error %s\\n", strerror(errno));        close(fd);        return 1;    }pthread_t read_tid, write_tid;    int ret;    // 创建读取线程    ret = pthread_create(&read_tid, NULL, read_thread, &fd);    if (ret != 0) {        fprintf(stderr, "Failed to create read thread\\n");        return 1;    }    // 创建写入线程    ret = pthread_create(&write_tid, NULL, write_thread, &fd);    if (ret != 0) {        fprintf(stderr, "Failed to create write thread\\n");        return 1;    }    // 等待读取线程和写入线程结束    pthread_join(read_tid, NULL);    pthread_join(write_tid, NULL);    close(fd);     return 0;}static int baudflag_arr[] = {    B921600, B460800, B230400, B115200, B57600, B38400,    B19200,  B9600,   B4800,   B2400,   B1800,  B1200,    B600,    B300,    B150,    B110,    B75,    B50};static int speed_arr[] = {    921600,  460800,  230400,  115200,  57600,  38400,    19200,   9600,    4800,    2400,    1800,   1200,    600,     300,     150,     110,     75,     50};int speed_to_flag(int speed){    int i;     for (i = 0;  i < sizeof(speed_arr)/sizeof(int);  i++) {        if (speed == speed_arr[i]) {            return baudflag_arr[i];        }    }     fprintf(stderr, "Unsupported baudrate, use 9600 instead!\\n");    return B9600;}static struct termio oterm_attr;int setup_port(int fd, int baud, int databits, int parity, int stopbits){    struct termio term_attr;         if (ioctl(fd, TCGETA, &term_attr) < 0) {        return -1;    }         memcpy(&oterm_attr, &term_attr, sizeof(struct termio));     term_attr.c_iflag &= ~(INLCR | IGNCR | ICRNL | ISTRIP);    term_attr.c_oflag &= ~(OPOST | ONLCR | OCRNL);    term_attr.c_lflag &= ~(ISIG | ECHO | ICANON | NOFLSH);    term_attr.c_cflag &= ~CBAUD;    term_attr.c_cflag |= CREAD | speed_to_flag(baud);         term_attr.c_cflag &= ~(CSIZE);    switch (databits) {        case 5:            term_attr.c_cflag |= CS5;            break;         case 6:            term_attr.c_cflag |= CS6;            break;         case 7:            term_attr.c_cflag |= CS7;            break;         case 8:        default:            term_attr.c_cflag |= CS8;            break;    }         switch (parity) {        case 1:              term_attr.c_cflag |= (PARENB | PARODD);            break;         case 2:              term_attr.c_cflag |= PARENB;            term_attr.c_cflag &= ~(PARODD);            break;         case 0:          default:            term_attr.c_cflag &= ~(PARENB);            break;    }          switch (stopbits) {        case 2:              term_attr.c_cflag |= CSTOPB;            break;         case 1:          default:            term_attr.c_cflag &= ~CSTOPB;            break;    }     term_attr.c_cc[VMIN] = 1;    term_attr.c_cc[VTIME] = 0;     if (ioctl(fd, TCSETAW, &term_attr) < 0) {        return -1;    }     if (ioctl(fd, TCFLSH, 2) < 0) {        return -1;    }     return 0;}  int read_data(int fd, void *buf, int len){    int count;    int ret;     ret = 0;    count = 0;     //while (len > 0) {     ret = read(fd, (char*)buf + count, len);    if (ret < 1) {        fprintf(stderr, "Read error %s\\n", strerror(errno));        //break;    }     count += ret;    len = len - ret;     //}     *((char*)buf + count) = 0;    return count;}  int write_data(int fd, void *buf, int len){    int count;    int ret;     ret = 0;    count = 0;     while (len > 0) {         ret = write(fd, (char*)buf + count, len);        if (ret < 1) {            fprintf(stderr, "Write error %s\\n", strerror(errno));            break;        }         count += ret;        len = len - ret;    }     return count;}void print_usage(char *program_name){    fprintf(stderr,            "*************************************\\n"            "  A Simple Serial Port Test Utility\\n"            "*************************************\\n\\n"            "Usage:\\n  %s < device > < baud > < databits > < parity > < stopbits > \\n"            "       databits: 5, 6, 7, 8\\n"            "       parity: 0(None), 1(Odd), 2(Even)\\n"            "       stopbits: 1, 2\\n"            "Example:\\n  %s /dev/ttyS4 115200 8 0 1\\n\\n",            program_name, program_name           );}

运行效果如下:

审核编辑:汤梓红

标签: